Equatorial Atlantic Deep-Sea Arkosic Sands and Ice-Age Aridity in Tropical South America

Author(s):  
JOHN E. DAMUTH ◽  
RHODES W. FAIRBRIDGE
Bird-Banding ◽  
1975 ◽  
Vol 46 (2) ◽  
pp. 191
Author(s):  
Burt L. Monroe, ◽  
J. Haffer

Zootaxa ◽  
2021 ◽  
Vol 4942 (4) ◽  
pp. 583-591
Author(s):  
FABIANO STEFANELLO

The giant water bug fauna from tropical South America remains poorly known. Three species of Belostoma Latreille (Belostoma fittkaui De Carlo, B. sayagoi De Carlo and B. hirsutum Roback & Nieser) have been cited only a few times in the literature. These three species are remarkable since they represent an extreme variation for the genus, with article II of the labium distinctly shorter than article III. Here, the synonymy of B. hirsutum with B. sayagoi is proposed based on examination of type material and additional specimens. Further, B. fittkaui and B. sayagoi are redescribed, including discussion about comparative morphology with congeners. A new species group is proposed for these species and a key to the Belostoma species groups is provided. Distribution records are also updated. 


1982 ◽  
Vol 17 (2) ◽  
pp. 148-172 ◽  
Author(s):  
Glenn A. Jones ◽  
William F. Ruddiman

AbstractL. V. Worthington (1968, Meteorological Monographs 8, 63–67) hypothesized that a low-salinity lid covered the entire world ocean. By deconvolving isotopic curves from the western equatorial Pacific and equatorial Atlantic, W. H. Berger, R. F. Johnson, and J. S. Killingley (1977), Nature (London) 269, 661–663) and W. H. Berger (1978, Deep-Sea Research 25, 473–480) reconstructed “meltwater spikes” similar to those actually observed in the Gulf of Mexico and thus apparently confirmed the Worthington hypothesis. It is shown that this conclusion is unwarranted. The primary flaw in the reconstructed meltwater spikes is that the mixing intensity used in the deconvolution operation is overestimated. As a result, structure recorded in the mixed isotopic record becomes exaggerated in the attempt to restore the original unmixed record. This structure can be attributed to variable ice-volume decay during deglaciation, effects of differential solution on planktonic foraminifera, temporal changes in abundance of the foraminifera carrying the isotopic signal, and analytical error. An alternative geographic view to the global low-salinity lid is offered: a map showing portions of the ocean potentially affected by increased deglacial meltwater at middle and high latitudes and by increased precipitation-induced runoff at low and middle latitudes.


2013 ◽  
Vol 9 (3) ◽  
pp. 2277-2308
Author(s):  
R. de Jong ◽  
L. von Gunten ◽  
A. Maldonado ◽  
M. Grosjean

Abstract. High-resolution reconstructions of climate variability that cover the past millennia are necessary to improve the understanding of natural and anthropogenic climate change across the globe. Although numerous records are available for the mid- and high-latitudes of the Northern Hemisphere, global assessments are still compromised by the scarcity of data from the Southern Hemisphere. This is particularly the case for the tropical and subtropical areas. In addition, high elevation sites in the South American Andes may provide insight into the vertical structure of climate change in the mid-troposphere. This study presents a 3000 yr long austral summer (November to February) temperature reconstruction derived from the 210Pb and 14C dated organic sediments of Laguna Chepical (32°16' S/70°30' W, 3050 m a.s.l.), a high-elevation glacial lake in the subtropical Andes of central Chile. Scanning reflectance spectroscopy in the visible light range provided the spectral index R570/R630, which reflects the clay mineral content in lake sediments. For the calibration period (AD 1901–2006), the R570/R630 data were regressed against monthly meteorological reanalysis data, showing that this proxy was strongly and significantly correlated with mean summer (NDJF) temperatures (R3yr = −0.63, padj = 0.01). This calibration model was used to make a quantitative temperature reconstruction back to 1000 BC. The reconstruction (with a model error RMSEPboot of 0.33 °C) shows that the warmest decades of the past 3000 yr occurred during the calibration period. The 19th century (end of the Little Ice Age (LIA)) was cool. The prominent warmth reconstructed for the 18th century, which was also observed in other records from this area, seems systematic for subtropical and southern South America but remains difficult to explain. Except for this warm period, the LIA was generally characterized by cool summers. Back to AD 1400, the results from this study compare remarkably well to low altitude records from the Chilean Central Valley and Southern South America. However, the reconstruction from Laguna Chepical does not show a warm Medieval Climate Anomaly during the 12–13th century, which is consistent with records from tropical South America. The Chepical record also indicates substantial cooling prior to 800 BC. This coincides with well-known regional as well as global glacier advances which have been attributed to a grand solar minimum. This study thus provides insight into the climatic drivers and temperature patterns in a region for which currently very few data are available. It also shows that since ca AD 1400, long term temperature patterns were generally similar at low and high altitudes in central Chile.


Sign in / Sign up

Export Citation Format

Share Document